cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326933 Number of nonconstant irreducible polynomial divisors of the n-th polynomial given in A326926.

Original entry on oeis.org

0, 1, 2, 2, 1, 5, 1, 3, 4, 3, 1, 8, 1, 3, 5, 4, 1, 9, 1, 5, 5, 3, 1, 11, 2, 3, 6, 5, 1, 11, 1, 5, 5, 3, 3, 14, 1, 3, 5, 7, 1, 11, 1, 5, 9, 3, 1, 14, 2, 5, 5, 5, 1, 13, 3, 7, 5, 3, 1, 17, 1, 3, 9, 6, 3, 11, 1, 5, 5, 7, 1, 19, 1, 3, 8, 5, 3, 11, 1, 9, 8, 3, 1
Offset: 0

Views

Author

Clark Kimberling, Nov 01 2019

Keywords

Comments

It appears that each nonconstant polynomial is irreducible if and only if its degree is p-1 for some prime p other than 3.

Examples

			The 5 nonconstant irreducible divisors of the 5th polynomial appear in this factorization: -3 x (-2 + x) (-1 + x) (1 + x) (-1 + 2 x).
		

Crossrefs

Cf. A326926.

Programs

  • Mathematica
    g[x_, n_] := Numerator[ Factor[D[1/(x^2 - x + 1), {x, n}]]];
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *)
    h[n_] := CoefficientList[g[x, n]/n!, x]
    Table[h[n], {n, 0, 10}]
    Column[%]  (* A326926 array *)
    Table[-1 + Length[FactorList[g[x, n]/n!]], {n, 0, 100}]  (* A326933 *)
  • PARI
    A326933(n) = { my(p=1/(1-x+x^2)); for(k=1,n, p = deriv(p)); #(factor(numerator(p)/n!)~); };

Extensions

Starting offset corrected from 1 to 0 by Antti Karttunen, Mar 02 2023

A329062 Numbers k that are not prime powers (i.e., not in A000961) such that A328925(k) > 1; numbers k such that if we write k = Product_{i=1..t} p_i^e_i , then t > 1, and lcm_{1<=i,j<=t, i!=j} ord(p_i,p_j^e_j) < A002322(k), where ord(a,r) is the multiplicative order of a modulo r, and A002322 is the Carmichael lambda (usually written as psi).

Original entry on oeis.org

14, 34, 39, 46, 55, 62, 65, 68, 82, 86, 94, 95, 98, 111, 112, 117, 123, 124, 133, 136, 142, 145, 146, 153, 155, 158, 164, 172, 175, 178, 183, 194, 201, 203, 205, 206, 209, 218, 219, 221, 224, 226, 248, 253, 254, 259, 272, 274, 275, 287, 291, 292, 295, 299, 301, 302, 305, 309
Offset: 1

Views

Author

Jianing Song, Nov 02 2019

Keywords

Comments

Write psi = A002322, b = A118106. These are numbers k that are not prime powers such that b(k) < psi(k).
If k = Product_{i=1..t} p_i^e_i (t > 1), where {p_i} are distinct odd primes such that p_i is a quadratic residue modulo p_j for all i != j, then k is here, as b(k) | psi(k)/2.
If k = 2 * Product_{i=1..t} p_i^e_i, where {p_i} are distinct odd primes such that p_i is a quadratic residue modulo p_j for all i != j, and p_i == 1, 7 (mod 8), then k is here. For example, k = 2p, where p == 1, 7 (mod 8).
If k = 2^e * Product_{i=1..t} p_i^e_i (e > 1), where {p_i} are distinct odd primes such that p_i is a quadratic residue modulo p_j for all i != j, and p_i == 1 (mod 8), then k is here. For example, k = 2^e*p, where p == 1 (mod 8).
If k = p_1^e_1 * p_2^e_2, where p_1 is not a primitive root modulo p_2^e_2, p_2 is not a primitive root modulo p_1^e_1, then k is not necessarily here: for k = 3^2 * 67 = 603, 3 is not a primitive root modulo 67, 67 is not a primitive root modulo 3^2, but b(603) = psi(603) = 66. Conversely, if p_1 is a primitive root modulo p_2^e_2, then k can still be here: for k = 3^2 * 17 = 153, 3 is a primitive root modulo 17, but b(153) = 16 while psi(153) = 48.
If k is an odd number, then 4k is here if and only if 8k is also here. Write k = Product_{i=1..t} p_i^e_i, then b(4k) = lcm(lcm_{i=1..t} ord(p_i,4),lcm_{i=1..t} ord(2,p_i^e_i),b(k)), b(8k) = lcm(lcm_{i=1..t} ord(p_i,8),lcm_{i=1..t} ord(2,p_i^e_i),b(k)). It is easy to see that lcm(ord(p_i,4),ord(2,p_i^e_i)) = lcm(ord(p_i,8),ord(2,p_i^e_i)), so b(4k) = b(8k). Note that psi(4k) = psi(8k).
If k is an odd number such that 4k is here, then 16k is also here (but the converse is not true). Write k = Product_{i=1..t} p_i^e_i, N = lcm(lcm_{i=1..t} ord(2,p_i^e_i),b(k)), then b(4k) = lcm(lcm_{i=1..t} ord(p_i,4),N), b(16k) = lcm(lcm_{i=1..t} ord(p_i,16),N) = b(4k) or b(4k)*2 or b(4k)*4. Note that psi(16k) = lcm(psi(4k),4). If we have b(4k) < psi(4k) and b(16k) = psi(16k), let M = psi(k), then:
Case (a): M == 2 (mod 4), then b(16k) = psi(16k) = 2*psi(4k) = 2M, and b(4k) = b(16k)/4 = M/2 which is an odd number, so ord(2,p_i^e_i) is odd for all i, so p_i == 1, 7 (mod 8), which gives ord(p_i,16) <= 2*ord(p_i,4). As a result, b(16k) <= 2*b(4k), a contradiction!
Case (b): M == 0 (mod 4), then b(16k) = psi(16k) = psi(4k) = M. If N is divisible by 4, then b(4k) = b(16k) = N, a contradiction. So 4 does not divide N, we have v(M,2) = v(lcm(lcm_{i=1..t} ord(p_i,16),N),2) <= 2, but 4 | M, so v(M,2) = 2, where v(,2) is the 2-adic valuation. As a result, there must exist p_i congruent to 5 mod 8 to make v(M,2) = 2, then 4 | ord(2,p_i^e_i), so 4 | N, a contradiction!
{a(n)} union A328926 = N* \ A000961 U {1, 2}.

Examples

			Let ord(a,r) be the multiplicative order of a modulo r.
For k = 175 = 5^2 * 7, b(175) = lcm(ord(7,5^2),ord(5,7)) = lcm(4,6) = 12, while psi(175) = lcm(20,6) = 60, so 175 is a term.
For k = 410 = 2 * 5 * 41, b(410) = lcm(ord(5,2),ord(41,2),ord(2,5),ord(41,5),ord(2,41),ord(5,41)) = 20, while psi(410) = lcm(1,4,40) = 40, so 410 is a term.
		

Crossrefs

Programs

Showing 1-2 of 2 results.