A326932 The number of permutations of GF(2^n) that are of the form x -> g(x), where g is a polynomial with coefficients in GF(2).
2, 4, 36, 1536, 22500000, 263303591362560, 20851424802623573443244703744000, 504371920429767576352765364956611950142002504147895582720000000
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11
- Christof Beierle, Marcus Brinkmann, Gregor Leander, Linearly Self-Equivalent APN Permutations in Small Dimension, arXiv:2003.12006 [cs.IT], 2020.
- L. Carlitz and D. R. Hayes, Permutations with coefficients in a subfield, Acta Arithmetica 21.1 (1972), 131-135.
Crossrefs
Cf. A001037.
Programs
-
Mathematica
Block[{p}, p[n_] := p[n] = DivisorSum[n, (MoebiusMu[n/#]*2^#/n) &]; Array[Times @@ Map[p[#]!*#^p[#] &, Divisors@ #] &, 11]] (* Michael De Vlieger, Jul 08 2020 *)
Formula
a(n) = Product_{d|n} p(d)!*d^p(d), where p(d) is the number of irreducible polynomials over GF(2) of degree d (i.e., sequence A001037). Proven more generally in Carlitz and Hayes, 1972.
Comments