A326943 Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.
2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0
Examples
The a(0) = 2 through a(3) = 6 sets of subsets: {} {{1}} {{1},{1,2}} {{}} {{},{1}} {{2},{1,2}} {{},{1},{2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
Formula
Inverse binomial transform of A326945.
a(n) = Sum_{k=0..n} Stirling1(n,k)*A326906(k). - Andrew Howroyd, Aug 14 2019
Extensions
a(5)-a(7) from Andrew Howroyd, Aug 14 2019
Comments