cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326943 Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.

Original entry on oeis.org

2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 2 through a(3) = 6 sets of subsets:
  {}    {{1}}     {{1},{1,2}}
  {{}}  {{},{1}}  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A326906.
The case without empty edges is A309615.
The non-covering version is A326945.
The version not closed under intersection is A326939.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A326945.
a(n) = Sum_{k=0..n} Stirling1(n,k)*A326906(k). - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 14 2019