A326944 Number of T_0 sets of subsets of {1..n} that cover all n vertices, contain {}, and are closed under intersection.
1, 1, 4, 58, 3846, 2685550, 151873991914, 28175291154649937052
Offset: 0
Examples
The a(0) = 1 through a(2) = 4 sets of subsets: {{}} {{},{1}} {{},{1},{2}} {{},{1},{1,2}} {{},{2},{1,2}} {{},{1},{2},{1,2}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
Formula
a(n) = Sum_{k=0..n} Stirling1(n,k)*A326881(k). - Andrew Howroyd, Aug 14 2019
Extensions
a(5)-a(7) from Andrew Howroyd, Aug 14 2019
Comments