cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326948 Number of connected T_0 set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(3) = 86 set-systems:
  {12}{13}         {1}{2}{13}{123}     {1}{2}{3}{13}{23}
  {12}{23}         {1}{2}{23}{123}     {1}{2}{3}{13}{123}
  {13}{23}         {1}{3}{12}{13}      {1}{2}{3}{23}{123}
  {1}{2}{123}      {1}{3}{12}{23}      {1}{2}{12}{13}{23}
  {1}{3}{123}      {1}{3}{12}{123}     {1}{2}{12}{13}{123}
  {1}{12}{13}      {1}{3}{13}{23}      {1}{2}{12}{23}{123}
  {1}{12}{23}      {1}{3}{13}{123}     {1}{2}{13}{23}{123}
  {1}{12}{123}     {1}{3}{23}{123}     {1}{3}{12}{13}{23}
  {1}{13}{23}      {1}{12}{13}{23}     {1}{3}{12}{13}{123}
  {1}{13}{123}     {1}{12}{13}{123}    {1}{3}{12}{23}{123}
  {2}{3}{123}      {1}{12}{23}{123}    {1}{3}{13}{23}{123}
  {2}{12}{13}      {1}{13}{23}{123}    {1}{12}{13}{23}{123}
  {2}{12}{23}      {2}{3}{12}{13}      {2}{3}{12}{13}{23}
  {2}{12}{123}     {2}{3}{12}{23}      {2}{3}{12}{13}{123}
  {2}{13}{23}      {2}{3}{12}{123}     {2}{3}{12}{23}{123}
  {2}{23}{123}     {2}{3}{13}{23}      {2}{3}{13}{23}{123}
  {3}{12}{13}      {2}{3}{13}{123}     {2}{12}{13}{23}{123}
  {3}{12}{23}      {2}{3}{23}{123}     {3}{12}{13}{23}{123}
  {3}{13}{23}      {2}{12}{13}{23}     {1}{2}{3}{12}{13}{23}
  {3}{13}{123}     {2}{12}{13}{123}    {1}{2}{3}{12}{13}{123}
  {3}{23}{123}     {2}{12}{23}{123}    {1}{2}{3}{12}{23}{123}
  {12}{13}{23}     {2}{13}{23}{123}    {1}{2}{3}{13}{23}{123}
  {12}{13}{123}    {3}{12}{13}{23}     {1}{2}{12}{13}{23}{123}
  {12}{23}{123}    {3}{12}{13}{123}    {1}{3}{12}{13}{23}{123}
  {13}{23}{123}    {3}{12}{23}{123}    {2}{3}{12}{13}{23}{123}
  {1}{2}{3}{123}   {3}{13}{23}{123}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{12}{13}   {12}{13}{23}{123}
  {1}{2}{12}{23}   {1}{2}{3}{12}{13}
  {1}{2}{12}{123}  {1}{2}{3}{12}{23}
  {1}{2}{13}{23}   {1}{2}{3}{12}{123}
		

Crossrefs

The same with covering instead of connected is A059201, with unlabeled version A319637.
The non-T_0 version is A323818 (covering) or A326951 (not-covering).
The non-connected version is A326940, with unlabeled version A326946.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Logarithmic transform of A059201.