A326961 Number of set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called covering T_1 set-systems.
1, 1, 2, 36, 19020, 2010231696, 9219217412568364176, 170141181796805105960861096082778425120, 57896044618658097536026644159052312977171804852352892309392604715987334365792
Offset: 0
Keywords
Examples
The a(3) = 36 set-systems: {{1}{2}{3}} {{12}{13}{23}{123}} {{2}{3}{12}{13}{23}} {{12}{13}{23}} {{1}{2}{3}{12}{13}} {{2}{3}{12}{13}{123}} {{1}{2}{3}{12}} {{1}{2}{3}{12}{23}} {{2}{12}{13}{23}{123}} {{1}{2}{3}{13}} {{1}{2}{3}{13}{23}} {{3}{12}{13}{23}{123}} {{1}{2}{3}{23}} {{1}{2}{12}{13}{23}} {{1}{2}{3}{12}{13}{23}} {{1}{2}{13}{23}} {{1}{2}{3}{12}{123}} {{1}{2}{3}{12}{13}{123}} {{1}{2}{3}{123}} {{1}{2}{3}{13}{123}} {{1}{2}{3}{12}{23}{123}} {{1}{3}{12}{23}} {{1}{2}{3}{23}{123}} {{1}{2}{3}{13}{23}{123}} {{2}{3}{12}{13}} {{1}{3}{12}{13}{23}} {{1}{2}{12}{13}{23}{123}} {{1}{12}{13}{23}} {{1}{2}{13}{23}{123}} {{1}{3}{12}{13}{23}{123}} {{2}{12}{13}{23}} {{1}{3}{12}{23}{123}} {{2}{3}{12}{13}{23}{123}} {{3}{12}{13}{23}} {{1}{12}{13}{23}{123}} {{1}{2}{3}{12}{13}{23}{123}}
Crossrefs
Covering set-systems are A003465.
Covering T_0 set-systems are A059201.
The version with empty edges allowed is A326960.
The non-covering version is A326965.
Covering set-systems whose dual is a weak antichain are A326970.
The unlabeled version is A326974.
The BII-numbers of T_1 set-systems are A326979.
Programs
-
Mathematica
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&tmQ[#]&]],{n,0,3}]
Formula
Inverse binomial transform of A326965.
Comments