A326963 Number of length n arrays with entries that cover an initial interval of positive integers counting chiral pairs as equivalent, i.e., the arrays are reversible.
1, 1, 2, 8, 39, 277, 2348, 23684, 272955, 3543901, 51124052, 811318628, 14045786139, 263429197837, 5320671508868, 115141595761844, 2657827341263595, 65185383518111581, 1692767331631966292, 46400793659715329348, 1338843898122243225339, 40562412499252848257197
Offset: 0
Keywords
Examples
a(3) = 8 because there are the following arrays up to reversal: 111, 112, 121, 122, 212, 123, 132, 213.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Row sums of A305621.
Programs
-
PARI
a(n) = {sum(k=0, n, k! * (stirling(n, k, 2) + stirling((n+1)\2, k, 2)) / 2)}
Formula
a(n) = Sum_{k=0..n} (k!/2) * (Stirling2(n, k) + Stirling2(ceiling(n/2), k)).