cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326965 Number of set-systems on n vertices where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

1, 2, 5, 46, 19181, 2010327182, 9219217424630040409, 170141181796805106025395618012972506978, 57896044618658097536026644159052312978532934306727333157337631572314050272137
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set-system where no edge is a subset of any other. This sequence counts set-systems whose dual is a (strict) antichain, also called T_1 set-systems.

Examples

			The a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{2},{1,2}}
		

Crossrefs

Set-systems are A058891.
T_0 set-systems are A326940.
The covering case is A326961.
The version with empty edges allowed is A326967.
Set-systems whose dual is a weak antichain are A326968.
The unlabeled version is A326972.
The BII_numbers of these set-systems are A326979.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],tmQ]],{n,0,3}]

Formula

Binomial transform of A326961.
a(n) = A326967(n)/2.

A326951 Number of unlabeled sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

2, 4, 8, 40, 2464
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Alternatively, these are unlabeled sets of subsets of {1..n} whose dual is a (strict) antichain, also called T_1 sets of subsets. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. An antichain is a set of subsets where no edge is a subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(2) = 8 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{},{1}}
                  {{1},{2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Unlabeled sets of subsets are A003180.
Unlabeled T_0 sets of subsets are A326949.
The labeled version is A326967.
The case without empty edges is A326972.
The covering case is A327011 (first differences).

Formula

a(n) = 2 * A326972(n).
a(n) = Sum_{k = 0..n} A327011(k).

A326960 Number of sets of subsets of {1..n} covering all n vertices whose dual is a (strict) antichain, also called covering T_1 sets of subsets.

Original entry on oeis.org

2, 2, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Same as A059052 except with a(1) = 2 instead of 4.
The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of subsets where no edge is a subset of any other.
Alternatively, these are sets of subsets of {1..n} covering all n vertices where every vertex is the unique common element of some subset of the edges.

Examples

			The a(0) = 2 through a(2) = 4 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Covering sets of subsets are A000371.
Covering T_0 sets of subsets are A326939.
The case without empty edges is A326961.
The non-covering version is A326967.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Length[Union[Select[Intersection@@@Rest[Subsets[#]],Length[#]==1&]]]==n&]],{n,0,3}]

Formula

Binomial transform of A326967.

A326969 Number of sets of subsets of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

2, 4, 12, 112, 38892
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 2 through a(2) = 12 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{1},{2}}
                  {{},{1,2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Sets of subsets whose dual is strict are A326941.
The BII-numbers of set-systems whose dual is a weak antichain are A326966.
Sets of subsets whose dual is a (strict) antichain are A326967.
The case without empty edges is A326968.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

a(n) = 2 * A326968(n).
a(n) = 2 * Sum_{k = 0..n} binomial(n, k) * A326970(k).

A327017 Number of non-isomorphic multiset partitions of weight n where every vertex, as a multiset of weight 1, is the multiset-meet of some subset of the edges.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 49, 115, 310, 830, 2383
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2019

Keywords

Comments

The multiset-meet of a collection of multisets has as underlying set the intersection of their underlying sets and as multiplicities the minima of their multiplicities.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 19 multiset partitions:
    {1}  {1}{1}  {1}{11}    {1}{111}      {1}{1111}
         {1}{2}  {1}{1}{1}  {1}{1}{11}    {1}{1}{111}
                 {1}{2}{2}  {1}{2}{12}    {1}{11}{11}
                 {1}{2}{3}  {1}{2}{22}    {1}{12}{22}
                            {1}{1}{1}{1}  {1}{2}{122}
                            {1}{1}{2}{2}  {1}{2}{222}
                            {1}{2}{2}{2}  {1}{1}{1}{11}
                            {1}{2}{3}{3}  {1}{1}{2}{22}
                            {1}{2}{3}{4}  {1}{2}{2}{12}
                                          {1}{2}{2}{22}
                                          {1}{2}{3}{23}
                                          {1}{2}{3}{33}
                                          {1}{1}{1}{1}{1}
                                          {1}{1}{2}{2}{2}
                                          {1}{2}{2}{2}{2}
                                          {1}{2}{2}{3}{3}
                                          {1}{2}{3}{3}{3}
                                          {1}{2}{3}{4}{4}
                                          {1}{2}{3}{4}{5}
		

Crossrefs

Showing 1-5 of 5 results.