cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A326965 Number of set-systems on n vertices where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

1, 2, 5, 46, 19181, 2010327182, 9219217424630040409, 170141181796805106025395618012972506978, 57896044618658097536026644159052312978532934306727333157337631572314050272137
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set-system where no edge is a subset of any other. This sequence counts set-systems whose dual is a (strict) antichain, also called T_1 set-systems.

Examples

			The a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{2},{1,2}}
		

Crossrefs

Set-systems are A058891.
T_0 set-systems are A326940.
The covering case is A326961.
The version with empty edges allowed is A326967.
Set-systems whose dual is a weak antichain are A326968.
The unlabeled version is A326972.
The BII_numbers of these set-systems are A326979.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],tmQ]],{n,0,3}]

Formula

Binomial transform of A326961.
a(n) = A326967(n)/2.

A326974 Number of unlabeled set-systems covering n vertices where every vertex is the unique common element of some subset of the edges, also called unlabeled covering T_1 set-systems.

Original entry on oeis.org

1, 1, 2, 16, 1212
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2019

Keywords

Comments

Alternatively, these are unlabeled set-systems covering n vertices whose dual is a (strict) antichain. A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set-system where no edge is a subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 16 set-systems:
  {}  {{1}}  {{1},{2}}        {{1},{2},{3}}
             {{1},{2},{1,2}}  {{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{2,3}}
                              {{1},{2},{1,3},{2,3}}
                              {{1},{2},{3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{1,3},{2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled covers are A055621.
The same with T_0 instead of T_1 is A319637.
The labeled version is A326961.
The non-covering version is A326972 (partial sums).
Unlabeled covering set-systems whose dual is a weak antichain are A326973.

Formula

a(n > 0) = A326972(n) - A326972(n - 1).

A326972 Number of unlabeled set-systems on n vertices whose dual is a (strict) antichain, also called unlabeled T_1 set-systems.

Original entry on oeis.org

1, 2, 4, 20, 1232
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 20 set-systems:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1},{2}}        {{1},{2}}
             {{1},{2},{1,2}}  {{1},{2},{3}}
                              {{1},{2},{1,2}}
                              {{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{2,3}}
                              {{1},{2},{1,3},{2,3}}
                              {{1},{2},{3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{1,3},{2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled set-systems are A000612.
Unlabeled set-systems whose dual is strict are A326946.
The version with empty edges allowed is A326951.
The labeled version is A326965.
The version where the dual is not required to be strict is A326971.
The covering version is A326974 (first differences).

A326971 Number of unlabeled set-systems on n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 5, 24, 1267
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 24 set-systems:
  {}  {}     {}               {}
      {{1}}  {{1}}            {{1}}
             {{1,2}}          {{1,2}}
             {{1},{2}}        {{1},{2}}
             {{1},{2},{1,2}}  {{1,2,3}}
                              {{1},{2,3}}
                              {{1},{2},{3}}
                              {{1},{2},{1,2}}
                              {{1,2},{1,3},{2,3}}
                              {{1},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3}}
                              {{1},{2},{1,3},{2,3}}
                              {{1},{2},{3},{1,2,3}}
                              {{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{3},{1,3},{2,3}}
                              {{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3}}
                              {{1},{2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3}}
                              {{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,3},{2,3},{1,2,3}}
                              {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
                              {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled set-systems are A000612.
Unlabeled set-systems whose dual is strict are A326946.
The labeled version is A326968.
The version with empty edges allowed is A326969.
The T_0 case (with strict dual) is A326972.
The covering case is A326973 (first differences).

A326960 Number of sets of subsets of {1..n} covering all n vertices whose dual is a (strict) antichain, also called covering T_1 sets of subsets.

Original entry on oeis.org

2, 2, 4, 72, 38040, 4020463392, 18438434825136728352, 340282363593610211921722192165556850240, 115792089237316195072053288318104625954343609704705784618785209431974668731584
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Same as A059052 except with a(1) = 2 instead of 4.
The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of subsets where no edge is a subset of any other.
Alternatively, these are sets of subsets of {1..n} covering all n vertices where every vertex is the unique common element of some subset of the edges.

Examples

			The a(0) = 2 through a(2) = 4 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Covering sets of subsets are A000371.
Covering T_0 sets of subsets are A326939.
The case without empty edges is A326961.
The non-covering version is A326967.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Length[Union[Select[Intersection@@@Rest[Subsets[#]],Length[#]==1&]]]==n&]],{n,0,3}]

Formula

Binomial transform of A326967.

A326969 Number of sets of subsets of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

2, 4, 12, 112, 38892
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 2 through a(2) = 12 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{1,2}}
                  {{},{1}}
                  {{},{2}}
                  {{1},{2}}
                  {{},{1,2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Sets of subsets whose dual is strict are A326941.
The BII-numbers of set-systems whose dual is a weak antichain are A326966.
Sets of subsets whose dual is a (strict) antichain are A326967.
The case without empty edges is A326968.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

a(n) = 2 * A326968(n).
a(n) = 2 * Sum_{k = 0..n} binomial(n, k) * A326970(k).

A326967 Number of sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.

Original entry on oeis.org

2, 4, 10, 92, 38362, 4020654364, 18438434849260080818, 340282363593610212050791236025945013956, 115792089237316195072053288318104625957065868613454666314675263144628100544274
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

Alternatively, these are sets of subsets of {1..n} whose dual is a (strict) antichain, also called T_1 sets of subsets. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other.

Examples

			The a(0) = 2 through a(2) = 10 sets of subsets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{2}}
                  {{},{1}}
                  {{},{2}}
                  {{1},{2}}
                  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Sets of subsets are A001146.
The unlabeled version is A326951.
The covering version is A326960.
The case without empty edges is A326965.
Sets of subsets whose dual is a weak antichain are A326969.

Programs

  • Mathematica
    tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
    Table[Length[Select[Subsets[Subsets[Range[n]]],tmQ[#]&]],{n,0,3}]

Formula

a(n) = 2 * A326965(n).
Binomial transform of A326960.

A326948 Number of connected T_0 set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(3) = 86 set-systems:
  {12}{13}         {1}{2}{13}{123}     {1}{2}{3}{13}{23}
  {12}{23}         {1}{2}{23}{123}     {1}{2}{3}{13}{123}
  {13}{23}         {1}{3}{12}{13}      {1}{2}{3}{23}{123}
  {1}{2}{123}      {1}{3}{12}{23}      {1}{2}{12}{13}{23}
  {1}{3}{123}      {1}{3}{12}{123}     {1}{2}{12}{13}{123}
  {1}{12}{13}      {1}{3}{13}{23}      {1}{2}{12}{23}{123}
  {1}{12}{23}      {1}{3}{13}{123}     {1}{2}{13}{23}{123}
  {1}{12}{123}     {1}{3}{23}{123}     {1}{3}{12}{13}{23}
  {1}{13}{23}      {1}{12}{13}{23}     {1}{3}{12}{13}{123}
  {1}{13}{123}     {1}{12}{13}{123}    {1}{3}{12}{23}{123}
  {2}{3}{123}      {1}{12}{23}{123}    {1}{3}{13}{23}{123}
  {2}{12}{13}      {1}{13}{23}{123}    {1}{12}{13}{23}{123}
  {2}{12}{23}      {2}{3}{12}{13}      {2}{3}{12}{13}{23}
  {2}{12}{123}     {2}{3}{12}{23}      {2}{3}{12}{13}{123}
  {2}{13}{23}      {2}{3}{12}{123}     {2}{3}{12}{23}{123}
  {2}{23}{123}     {2}{3}{13}{23}      {2}{3}{13}{23}{123}
  {3}{12}{13}      {2}{3}{13}{123}     {2}{12}{13}{23}{123}
  {3}{12}{23}      {2}{3}{23}{123}     {3}{12}{13}{23}{123}
  {3}{13}{23}      {2}{12}{13}{23}     {1}{2}{3}{12}{13}{23}
  {3}{13}{123}     {2}{12}{13}{123}    {1}{2}{3}{12}{13}{123}
  {3}{23}{123}     {2}{12}{23}{123}    {1}{2}{3}{12}{23}{123}
  {12}{13}{23}     {2}{13}{23}{123}    {1}{2}{3}{13}{23}{123}
  {12}{13}{123}    {3}{12}{13}{23}     {1}{2}{12}{13}{23}{123}
  {12}{23}{123}    {3}{12}{13}{123}    {1}{3}{12}{13}{23}{123}
  {13}{23}{123}    {3}{12}{23}{123}    {2}{3}{12}{13}{23}{123}
  {1}{2}{3}{123}   {3}{13}{23}{123}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{12}{13}   {12}{13}{23}{123}
  {1}{2}{12}{23}   {1}{2}{3}{12}{13}
  {1}{2}{12}{123}  {1}{2}{3}{12}{23}
  {1}{2}{13}{23}   {1}{2}{3}{12}{123}
		

Crossrefs

The same with covering instead of connected is A059201, with unlabeled version A319637.
The non-T_0 version is A323818 (covering) or A326951 (not-covering).
The non-connected version is A326940, with unlabeled version A326946.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Logarithmic transform of A059201.

A327059 Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 4, 10, 178
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 10 set-systems:
  {}  {}     {}      {}
      {{1}}  {{1}}   {{1}}
             {{2}}   {{2}}
             {{12}}  {{3}}
                     {{12}}
                     {{13}}
                     {{23}}
                     {{123}}
                     {{12}{13}{23}}
                     {{12}{13}{23}{123}}
		

Crossrefs

Intersecting set-systems are A051185.
The BII-numbers of these set-systems are the intersection of A326910 and A326966.
Set-systems whose dual is a weak antichain are A326968.
The covering version is A327058.
The unlabeled multiset partition version is A327060.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

Binomial transform of A327058.

A327011 Number of unlabeled sets of subsets covering n vertices where every vertex is the unique common element of some subset of the edges, also called unlabeled covering T_1 sets of subsets.

Original entry on oeis.org

2, 2, 4, 32, 2424
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

Alternatively, these are unlabeled sets of subsets covering n vertices whose dual is a (strict) antichain. The dual of a set of subsets has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of subsets where no edge is a subset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(2) = 4 sets of subsets:
  {}    {{1}}     {{1},{2}}
  {{}}  {{},{1}}  {{},{1},{2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

Unlabeled covering sets of subsets are A003181.
The same with T_0 instead of T_1 is A326942.
The non-covering version is A326951 (partial sums).
The labeled version is A326960.
The case without empty edges is A326974.

Formula

a(n) = A326974(n) / 2.
a(n > 0) = A326951(n) - A326951(n - 1).
Showing 1-10 of 10 results.