cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326970 Number of set-systems covering n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 1, 3, 43, 19251
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edges consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(3) = 43 set-systems:
  {123}  {1}{23}  {1}{2}{3}     {1}{2}{3}{12}
         {2}{13}  {12}{13}{23}  {1}{2}{3}{13}
         {3}{12}  {1}{23}{123}  {1}{2}{3}{23}
                  {2}{13}{123}  {1}{2}{13}{23}
                  {3}{12}{123}  {1}{2}{3}{123}
                                {1}{3}{12}{23}
                                {2}{3}{12}{13}
                                {1}{12}{13}{23}
                                {2}{12}{13}{23}
                                {3}{12}{13}{23}
                                {12}{13}{23}{123}
.
  {1}{2}{3}{12}{13}     {1}{2}{3}{12}{13}{23}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{3}{12}{23}     {1}{2}{3}{12}{13}{123}
  {1}{2}{3}{13}{23}     {1}{2}{3}{12}{23}{123}
  {1}{2}{12}{13}{23}    {1}{2}{3}{13}{23}{123}
  {1}{2}{3}{12}{123}    {1}{2}{12}{13}{23}{123}
  {1}{2}{3}{13}{123}    {1}{3}{12}{13}{23}{123}
  {1}{2}{3}{23}{123}    {2}{3}{12}{13}{23}{123}
  {1}{3}{12}{13}{23}
  {2}{3}{12}{13}{23}
  {1}{2}{13}{23}{123}
  {1}{3}{12}{23}{123}
  {2}{3}{12}{13}{123}
  {1}{12}{13}{23}{123}
  {2}{12}{13}{23}{123}
  {3}{12}{13}{23}{123}
		

Crossrefs

Covering set-systems are A003465.
Covering set-systems whose dual is strict are A059201.
The T_1 case is A326961.
The BII-numbers of these set-systems are A326966.
The non-covering case is A326968.
The unlabeled version is A326973.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

Inverse binomial transform of A326968.