A326970 Number of set-systems covering n vertices whose dual is a weak antichain.
1, 1, 3, 43, 19251
Offset: 0
Examples
The a(3) = 43 set-systems: {123} {1}{23} {1}{2}{3} {1}{2}{3}{12} {2}{13} {12}{13}{23} {1}{2}{3}{13} {3}{12} {1}{23}{123} {1}{2}{3}{23} {2}{13}{123} {1}{2}{13}{23} {3}{12}{123} {1}{2}{3}{123} {1}{3}{12}{23} {2}{3}{12}{13} {1}{12}{13}{23} {2}{12}{13}{23} {3}{12}{13}{23} {12}{13}{23}{123} . {1}{2}{3}{12}{13} {1}{2}{3}{12}{13}{23} {1}{2}{3}{12}{13}{23}{123} {1}{2}{3}{12}{23} {1}{2}{3}{12}{13}{123} {1}{2}{3}{13}{23} {1}{2}{3}{12}{23}{123} {1}{2}{12}{13}{23} {1}{2}{3}{13}{23}{123} {1}{2}{3}{12}{123} {1}{2}{12}{13}{23}{123} {1}{2}{3}{13}{123} {1}{3}{12}{13}{23}{123} {1}{2}{3}{23}{123} {2}{3}{12}{13}{23}{123} {1}{3}{12}{13}{23} {2}{3}{12}{13}{23} {1}{2}{13}{23}{123} {1}{3}{12}{23}{123} {2}{3}{12}{13}{123} {1}{12}{13}{23}{123} {2}{12}{13}{23}{123} {3}{12}{13}{23}{123}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]
Formula
Inverse binomial transform of A326968.
Comments