A326977 Number of integer partitions of n such that the dual of the multiset partition obtained by factoring each part into prime numbers is a (strict) antichain, also called T_1 integer partitions.
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 49, 64, 85, 109, 141, 181, 234, 294, 375, 470, 589, 733, 917, 1131, 1401, 1720, 2113, 2581, 3153, 3833, 4655, 5631, 6801, 8192, 9849, 11816, 14148, 16899, 20153, 23990, 28503, 33815, 40038, 47330, 55858, 65841, 77475
Offset: 0
Keywords
Examples
The a(0) = 1 through a(7) = 14 partitions: () (1) (2) (3) (4) (5) (33) (7) (11) (21) (22) (32) (42) (43) (111) (31) (41) (51) (52) (211) (221) (222) (322) (1111) (311) (321) (331) (2111) (411) (421) (11111) (2211) (511) (3111) (2221) (21111) (3211) (111111) (4111) (22111) (31111) (211111) (1111111)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]] dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; Table[Length[Select[IntegerPartitions[n],UnsameQ@@dual[primeMS/@#]&&stableQ[dual[primeMS/@#],submultQ]&]],{n,0,30}]
Comments