cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326977 Number of integer partitions of n such that the dual of the multiset partition obtained by factoring each part into prime numbers is a (strict) antichain, also called T_1 integer partitions.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 49, 64, 85, 109, 141, 181, 234, 294, 375, 470, 589, 733, 917, 1131, 1401, 1720, 2113, 2581, 3153, 3833, 4655, 5631, 6801, 8192, 9849, 11816, 14148, 16899, 20153, 23990, 28503, 33815, 40038, 47330, 55858, 65841, 77475
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of multisets, none of which is a submultiset of any other.

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (33)      (7)
           (11)  (21)   (22)    (32)     (42)      (43)
                 (111)  (31)    (41)     (51)      (52)
                        (211)   (221)    (222)     (322)
                        (1111)  (311)    (321)     (331)
                                (2111)   (411)     (421)
                                (11111)  (2211)    (511)
                                         (3111)    (2221)
                                         (21111)   (3211)
                                         (111111)  (4111)
                                                   (22111)
                                                   (31111)
                                                   (211111)
                                                   (1111111)
		

Crossrefs

T_0 integer partitions are A319564.
Set-systems whose dual is a (strict) antichain are A326965.
The version where the dual is a weak antichain is A326978.
T_1 factorizations (whose dual is a strict antichain) are A327012.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@dual[primeMS/@#]&&stableQ[dual[primeMS/@#],submultQ]&]],{n,0,30}]