A326978 Number of integer partitions of n such that the dual of the multiset partition obtained by factoring each part into prime numbers is a weak antichain.
1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 52, 68, 91, 116, 149, 191, 249, 311, 399, 498, 622, 773, 971, 1193, 1478, 1811, 2222, 2709, 3311, 4021, 4882, 5894, 7110, 8554, 10273, 12312, 14734, 17578, 20941, 24905, 29570, 35056, 41475, 48983, 57752, 68025, 79988
Offset: 0
Keywords
Examples
The a(0) = 1 through a(7) = 15 partitions: () (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (221) (51) (61) (1111) (311) (222) (322) (2111) (321) (331) (11111) (411) (421) (2211) (511) (3111) (2221) (21111) (3211) (111111) (4111) (22111) (31111) (211111) (1111111)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; Table[Length[Select[IntegerPartitions[n],stableQ[dual[primeMS/@#],submultQ]&]],{n,0,30}]
Comments