cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327001 Generalized Bell numbers, square array read by ascending antidiagonals, A(n, k) for n, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 4, 5, 8, 1, 1, 11, 31, 15, 16, 1, 1, 36, 365, 379, 52, 32, 1, 1, 127, 6271, 25323, 6556, 203, 64, 1, 1, 463, 129130, 3086331, 3068521, 150349, 877, 128, 1, 1, 1717, 2877421, 512251515, 3309362716, 583027547, 4373461, 4140, 256
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Examples

			[n\k][0  1   2        3        4           5             6]
[ - ] -----------------------------------------------------
[ 0 ] 1, 1,  2,       4,       8,         16,            32  A011782
[ 1 ] 1, 1,  2,       5,      15,         52,           203  A000110
[ 2 ] 1, 1,  4,      31,     379,       6556,        150349  A005046
[ 3 ] 1, 1, 11,     365,   25323,    3068521,     583027547  A291973
[ 4 ] 1, 1, 36,    6271, 3086331, 3309362716, 6626013560301  A291975
       A260878, A326998,
Formatted as a triangle:
[1]
[1, 1]
[1, 1,   2]
[1, 1,   2,    4]
[1, 1,   4,    5,     8]
[1, 1,  11,   31,    15,    16]
[1, 1,  36,  365,   379,   52,  32]
[1, 1, 127, 6271, 25323, 6556, 203, 64]
		

Crossrefs

A260876 (variant based on shapes).
Columns include: A260878, A326998.
Cf. A327000.

Programs

  • Maple
    A327001 := proc(n, k) option remember; if k = 0 then return 1 fi;
    add(binomial(n*k - 1, n*j) * A327001(n, j), j = 0..k-1) end:
    for n from 0 to 6 do seq(A327001(n, k), k=0..6) od; # row-wise
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 0, 1, Sum[Binomial[n*k-1, n*j]*A[n, j], {j, 0, k-1}]];
    Table[A[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)

Formula

A(n, k) = Sum_{j=0..k-1} binomial(n*k - 1, n*j) * A(n, j) for k > 0, A(n, 0) = 1.