cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327007 a(n) = number of iterations of f(x)=floor((x^2+n)/(2x)) starting at x=n to reach the value floor(sqrt(n)) (=A000196(n)).

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4
Offset: 1

Views

Author

Max Alekseyev, Aug 12 2019

Keywords

Comments

Also, we have f(x) = floor((x + floor(n/x))/2).
Notice that f(n) = f(1) = floor((n+1)/2), and so the starting value x = 1 gives the same sequence.
Iterations f(f(...f(a))...) reach floor(sqrt(n)) for any starting integer a >= 1. They either stabilize to floor(sqrt(n)) or alternate between floor(sqrt(n)) and ceiling(sqrt(n)).

Crossrefs

Programs

  • PARI
    { A327007(n,a=n) = my(k = 0); while(1, my(b = (a+n\a)\2); if(b >= a,break); a = b; k++); k; }