A327012 Number of factorizations of n into factors > 1 whose dual is a (strict) antichain.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1
Offset: 1
Keywords
Examples
The a(72) = 12 factorizations: (8*9) (3*24) (4*18) (2*4*9) (3*3*8) (3*4*6) (2*2*18) (2*3*12) (2*2*2*9) (2*2*3*6) (2*3*3*4) (2*2*2*3*3)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[facs[n],UnsameQ@@dual[primeMS/@#]&&stableQ[dual[primeMS/@#],submultQ]&]],{n,100}]
Comments