A327062
Number of antichains of distinct sets covering a subset of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
1, 2, 5, 16, 81, 2595
Offset: 0
The a(0) = 1 through a(3) = 16 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1},{2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1,2,3}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
The non-isomorphic multiset partition version is
A319721.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326853.
Set-systems whose dual is a weak antichain are
A326968.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327019
Number of non-isomorphic set-systems of weight n whose dual is a (strict) antichain.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 5, 7, 15, 26, 61
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(8) = 15 multiset partitions:
{1} {1}{2} {1}{2}{3} {1}{2}{12} {1}{2}{3}{23} {12}{13}{23}
{1}{2}{3}{4} {1}{2}{3}{4}{5} {1}{2}{13}{23}
{1}{2}{3}{123}
{1}{2}{3}{4}{34}
{1}{2}{3}{4}{5}{6}
.
{1}{23}{24}{34} {12}{13}{24}{34}
{3}{12}{13}{23} {2}{13}{14}{234}
{1}{2}{3}{13}{23} {1}{2}{13}{24}{34}
{1}{2}{3}{24}{34} {1}{2}{3}{14}{234}
{1}{2}{3}{4}{234} {1}{2}{3}{23}{123}
{1}{2}{3}{4}{5}{45} {1}{2}{3}{4}{1234}
{1}{2}{3}{4}{5}{6}{7} {1}{2}{34}{35}{45}
{1}{4}{23}{24}{34}
{2}{3}{12}{13}{23}
{1}{2}{3}{4}{12}{34}
{1}{2}{3}{4}{24}{34}
{1}{2}{3}{4}{35}{45}
{1}{2}{3}{4}{5}{345}
{1}{2}{3}{4}{5}{6}{56}
{1}{2}{3}{4}{5}{6}{7}{8}
Cf.
A007716,
A059523,
A283877,
A293993,
A326961,
A326965,
A326974,
A326976,
A326977,
A326979,
A327012,
A327018.
Showing 1-2 of 2 results.
Comments