cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327031 A(n, k) = Sum_{d|n} phi(d)*T(n/d, k) if n > 0 and A(0, k) = 0 where T(n, k) = binomial(n+k-1, n). Square array read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 8, 9, 4, 0, 0, 5, 12, 16, 14, 5, 0, 0, 6, 14, 27, 28, 20, 6, 0, 0, 7, 21, 33, 53, 45, 27, 7, 0, 0, 8, 20, 56, 72, 95, 68, 35, 8, 0, 0, 9, 28, 54, 132, 146, 159, 98, 44, 9, 0, 0, 10, 30, 84, 144, 285, 276, 252, 136, 54, 10, 0
Offset: 0

Views

Author

Peter Luschny, Aug 25 2019

Keywords

Examples

			[0] 0, 0,  0,  0,   0,   0,    0,    0,     0,     0, ... A000004
[1] 0, 1,  2,  3,   4,   5,    6,    7,     8,     9, ... A001477
[2] 0, 2,  5,  9,  14,  20,   27,   35,    44,    54, ... A000096
[3] 0, 3,  8, 16,  28,  45,   68,   98,   136,   183, ... A255993 (conj.)
[4] 0, 4, 12, 27,  53,  95,  159,  252,   382,   558, ... A327032
[5] 0, 5, 14, 33,  72, 146,  276,  490,   824,  1323, ...
[6] 0, 6, 21, 56, 132, 285,  572, 1078,  1924,  3276, ...
[7] 0, 7, 20, 54, 144, 360,  828, 1758,  3480,  6489, ...
[8] 0, 8, 28, 84, 236, 615, 1479, 3297,  6869, 13491, ...
[9] 0, 9, 30, 93, 284, 815, 2150, 5215, 11728, 24694, ...
     A209295,
		

Crossrefs

Cf. A000004 (n=0), A001477 (n=1), A000096 (n=2), A255993 (n=3 conj.), A327032 (n=4), A209295, A097805.

Programs

  • Maple
    DivisorSquareArray := proc(p, T, len) local row:
    row := (n, k) -> add(p(d)*T(n/d, k), d = numtheory:-divisors(n)):
    seq(lprint(seq(add(j, j=row(n, k)), k=0..len-1)), n=0..len-1) end:
    DivisorSquareArray(numtheory:-phi, (n, k) -> binomial(n+k-1, n), 9);
  • SageMath
    def DivisorSquareArray(p, T, Len):
        D = [[0]*Len]
        for n in (1..Len-1):
            r = lambda k: [p(d)*T(n//d, k) for d in divisors(n)]
            L = [sum(r(k)) for k in (0..Len-1)]
            D.append(L)
        return D
    def T(n, k): return binomial(n + k - 1, n)
    DivisorSquareArray(euler_phi, T, 10)