A327038 Number of pairwise intersecting set-systems covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
1, 2, 6, 34, 1020, 1188106, 909149847892, 291200434288840793135801
Offset: 0
Examples
The a(0) = 1 through a(2) = 6 set-systems: {} {} {} {{1}} {{1}} {{2}} {{1,2}} {{1},{1,2}} {{2},{1,2}} The a(3) = 34 set-systems: {} {{1}} {{1}{12}} {{1}{12}{123}} {{1}{12}{13}{123}} {{2}} {{1}{13}} {{1}{13}{123}} {{2}{12}{23}{123}} {{3}} {{2}{12}} {{12}{13}{23}} {{3}{13}{23}{123}} {{12}} {{2}{23}} {{2}{12}{123}} {{12}{13}{23}{123}} {{13}} {{3}{13}} {{2}{23}{123}} {{23}} {{3}{23}} {{3}{13}{123}} {{123}} {{1}{123}} {{3}{23}{123}} {{2}{123}} {{12}{13}{123}} {{3}{123}} {{12}{23}{123}} {{12}{123}} {{13}{23}{123}} {{13}{123}} {{23}{123}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
Formula
Binomial transform of A327037.
Extensions
a(6)-a(7) from Christian Sievers, Aug 18 2024
Comments