A327050 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) * (1 + x^(5*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))).
1, 2, 6, 14, 32, 66, 136, 260, 494, 902, 1620, 2832, 4890, 8260, 13792, 22664, 36824, 59060, 93814, 147364, 229490, 354052, 541916, 822736, 1240292, 1856246, 2760368, 4078522, 5990900, 8749052, 12708920, 18363656, 26404386, 37783040, 53820120, 76324576
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)) / ((1-x^k) * (1-x^(2*k)) * (1-x^(3*k)) * (1-x^(4*k)) * (1-x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] With[{nn=50,xk=x^(k Range[5])},CoefficientList[Series[Product[Times@@(1+xk)/Times@@(1-xk),{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Jul 23 2023 *)
Formula
a(n) ~ 137^(3/2) * exp(sqrt(137*n/15)*Pi/2) / (15*2^(21/2)*n^2).
Comments