A327055 Numbers m such that the arithmetic mean and the quadratic mean (the root mean square) of the divisors of m are both integers.
1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1
Keywords
Examples
Number 41 is a term because sigma(41) / tau(41) = 42 / 2 = 21 and sqrt((1^2 + 41^2) / tau(41) ) = sqrt(1682 / 2) = 29. Values of means of the first RMS number 2217231104 that is not in the sequence: 418652080/9 (noninteger) and 247511537 (integer).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..7391 (terms < 10^13)
Programs
-
Magma
[m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))]
-
Mathematica
aQ[n_] := IntegerQ[DivisorSigma[1, n]/(d = DivisorSigma[0, n])] && IntegerQ @ Sqrt[DivisorSigma[2, n]/d]; Select[Range[10^5], aQ] (* Amiram Eldar, Oct 07 2019 *)
Comments