A327057 Number of antichains covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).
1, 2, 4, 9, 36, 1572, 3750221
Offset: 0
Examples
The a(0) = 1 through a(3) = 9 antichains: {} {} {} {} {{1}} {{1}} {{1}} {{2}} {{2}} {{1,2}} {{3}} {{1,2}} {{1,3}} {{2,3}} {{1,2,3}} {{1,2},{1,3},{2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,5}]
Formula
Binomial transform of A327020.
Comments