A327061 BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1
Keywords
Examples
The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 8: {{3}} 16: {{1,3}} 17: {{1},{1,3}} 24: {{3},{1,3}} 32: {{2,3}} 34: {{2},{2,3}} 40: {{3},{2,3}} 52: {{1,2},{1,3},{2,3}} 64: {{1,2,3}} 65: {{1},{1,2,3}} 66: {{2},{1,2,3}} 68: {{1,2},{1,2,3}} 69: {{1},{1,2},{1,2,3}} 70: {{2},{1,2},{1,2,3}}
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments