A327073 Number of labeled simple connected graphs with n vertices and exactly one bridge.
0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Gus Wiseman, The a(4) = 12 graphs with exactly one bridge.
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]
1,{i,Length[#]}],True]==1&]],{n,0,5}] -
PARI
\\ See A095983. seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020
Formula
E.g.f.: (x + Sum_{k>=2} A095983(k)*x^k/(k-1)!)^2/2. - Andrew Howroyd, Aug 25 2019
Extensions
Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019
Comments