A327078 Binomial transform of A001187 (labeled connected graphs), if we assume A001187(1) = 0.
1, 1, 2, 8, 61, 969, 31738, 2069964, 267270033, 68629753641, 35171000942698, 36024807353574280, 73784587576805254653, 302228602363365451957793, 2475873310144021668263093202, 40564787336902311168400640561084
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 8 edge-sets: {} {} {} {} {{1,2}} {{1,2}} {{1,3}} {{2,3}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,3},{2,3}}
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-add( k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n) end: a:= n-> add(b(n-j)*binomial(n, j), j=0..n-2)+1: seq(a(n), n=0..18); # Alois P. Heinz, Aug 27 2019
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&]],{n,0,5}]
Comments