cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327080 BII-numbers of maximal uniform set-systems (or complete hypergraphs).

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 32, 52, 64, 128, 129, 130, 131, 136, 137, 138, 139, 256, 512, 772, 1024, 2048, 2320, 2592, 2868, 4096, 8192, 13376, 16384, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is uniform if all edges have the same size.

Examples

			The sequence of all maximal uniform set-systems together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   16: {{1,3}}
   32: {{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  136: {{3},{4}}
  137: {{1},{3},{4}}
  138: {{2},{3},{4}}
		

Crossrefs

BII-numbers of uniform set-systems are A326783.
The normal case (where the edges cover an initial interval) is A327081.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],With[{sys=bpe/@bpe[#]},#==0||SameQ@@Length/@sys&&Length[sys]==Binomial[Length[Union@@sys],Length[First[sys]]]]&]