A330217
BII-numbers of achiral set-systems.
Original entry on oeis.org
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 16, 25, 32, 42, 52, 63, 64, 75, 116, 127, 128, 129, 130, 131, 136, 137, 138, 139, 256, 385, 512, 642, 772, 903, 1024, 1155, 1796, 1927, 2048, 2184, 2320, 2457, 2592, 2730, 2868, 3007, 4096, 4233, 6416, 6553, 8192, 8330
Offset: 1
The sequence of all achiral set-systems together with their BII-numbers begins:
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
16: {{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
63: {{1},{2},{3},{1,2},{1,3},{2,3}}
64: {{1,2,3}}
75: {{1},{2},{3},{1,2,3}}
These are numbers n such that
A330231(n) = 1.
Achiral set-systems are counted by
A083323.
MG-numbers of planted achiral trees are
A214577.
Non-isomorphic achiral multiset partitions are
A330223.
Achiral integer partitions are counted by
A330224.
BII-numbers of fully chiral set-systems are
A330226.
MM-numbers of achiral multisets of multisets are
A330232.
Achiral factorizations are
A330234.
Cf.
A000120,
A003238,
A016031,
A048793,
A070939,
A326031,
A326702,
A327080,
A327081,
A330218,
A330229,
A330233.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
Select[Range[0,1000],Length[graprms[bpe/@bpe[#]]]==1&]
A327081
BII-numbers of maximal uniform set-systems covering an initial interval of positive integers.
Original entry on oeis.org
1, 3, 4, 11, 52, 64, 139, 2868, 13376, 16384, 32907
Offset: 1
The sequence of all maximal uniform set-systems covering an initial interval together with their BII-numbers begins:
0: {}
1: {{1}}
3: {{1},{2}}
4: {{1,2}}
11: {{1},{2},{3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
139: {{1},{2},{3},{4}}
2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16384: {{1,2,3,4}}
32907: {{1},{2},{3},{4},{5}}
BII-numbers of uniform set-systems are
A326783.
BII-numbers of maximal uniform set-systems are
A327080.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Select[Range[1000],With[{sys=bpe/@bpe[#]},#==0||normQ[Union@@sys]&&SameQ@@Length/@sys&&Length[sys]==Binomial[Length[Union@@sys],Length[First[sys]]]]&]
A327373
BII-numbers of complete simple graphs.
Original entry on oeis.org
0, 1, 4, 52, 2868, 9112372, 141334497921844, 39614688284139543691484924724, 3138550868424102398255194438067307501961665532948002835252, 19701003098197239607207513568280927372312554341759233318802451615112823176074440555010583132712036457851366790597428
Offset: 0
BII-numbers of uniform set-systems are
A326783.
BII-numbers of maximal uniform set-systems are
A327080.
BII-numbers of maximal uniform normal set-systems are
A327081.
-
Table[If[n==1,1,Total[2^(Total[2^#]/2&/@Subsets[Range[n],{2}])]/2],{n,0,10}]
Showing 1-3 of 3 results.
Comments