cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330217 BII-numbers of achiral set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 16, 25, 32, 42, 52, 63, 64, 75, 116, 127, 128, 129, 130, 131, 136, 137, 138, 139, 256, 385, 512, 642, 772, 903, 1024, 1155, 1796, 1927, 2048, 2184, 2320, 2457, 2592, 2730, 2868, 3007, 4096, 4233, 6416, 6553, 8192, 8330
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is achiral if it is not changed by any permutation of the vertices.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all achiral set-systems together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  16: {{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  42: {{2},{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  63: {{1},{2},{3},{1,2},{1,3},{2,3}}
  64: {{1,2,3}}
  75: {{1},{2},{3},{1,2,3}}
		

Crossrefs

These are numbers n such that A330231(n) = 1.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
BII-numbers of fully chiral set-systems are A330226.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Select[Range[0,1000],Length[graprms[bpe/@bpe[#]]]==1&]

A327080 BII-numbers of maximal uniform set-systems (or complete hypergraphs).

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 32, 52, 64, 128, 129, 130, 131, 136, 137, 138, 139, 256, 512, 772, 1024, 2048, 2320, 2592, 2868, 4096, 8192, 13376, 16384, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897, 32898, 32899, 32904, 32905, 32906
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is uniform if all edges have the same size.

Examples

			The sequence of all maximal uniform set-systems together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   16: {{1,3}}
   32: {{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  136: {{3},{4}}
  137: {{1},{3},{4}}
  138: {{2},{3},{4}}
		

Crossrefs

BII-numbers of uniform set-systems are A326783.
The normal case (where the edges cover an initial interval) is A327081.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],With[{sys=bpe/@bpe[#]},#==0||SameQ@@Length/@sys&&Length[sys]==Binomial[Length[Union@@sys],Length[First[sys]]]]&]

A327373 BII-numbers of complete simple graphs.

Original entry on oeis.org

0, 1, 4, 52, 2868, 9112372, 141334497921844, 39614688284139543691484924724, 3138550868424102398255194438067307501961665532948002835252, 19701003098197239607207513568280927372312554341759233318802451615112823176074440555010583132712036457851366790597428
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Crossrefs

BII-numbers of uniform set-systems are A326783.
BII-numbers of maximal uniform set-systems are A327080.
BII-numbers of maximal uniform normal set-systems are A327081.

Programs

  • Mathematica
    Table[If[n==1,1,Total[2^(Total[2^#]/2&/@Subsets[Range[n],{2}])]/2],{n,0,10}]
Showing 1-3 of 3 results.