cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327086 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 10, 1, 5, 16, 45, 28, 1, 6, 25, 136, 387, 128, 1, 7, 36, 325, 2784, 8352, 792, 1, 8, 49, 666, 13125, 186304, 382563, 7620, 1, 9, 64, 1225, 46836, 2117750, 36507008, 44526672, 124344
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. An achiral coloring is identical to its reflection.
A(n,k) is also the number of achiral colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of achiral colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2   3    4     5     6      7      8      9      10      11      12 ...
  1  4   9   16    25    36     49     64     81     100     121     144 ...
  1 10  45  136   325   666   1225   2080   3321    5050    7381   10440 ...
  1 28 387 2784 13125 46836 137543 349952 797769 1667500 3248971 5973408 ...
  ...
For A(2,3) = 9, the colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC.
		

Crossrefs

Cf. A327083 (oriented), A327084 (unoriented), A327085 (chiral), A327090 (exactly k colors), A325001 (vertices, facets), A337886 (faces, peaks), A337410 (orthotope edges, orthoplex ridges), A337414 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A000290, A037270, A331353.

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 0, pc[#] j^Total[CycleX[#]][[2]]] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[OddQ[Total[1-Mod[#,2]]], pc[#]k^ex[#], 0] &/@ IntegerPartitions[n+1]]/((n+1)!/2)
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327090(n,j) * binomial(k,j).
A(n,k) = 2*A327084(n,k) - A327083(n,k) = A327083(n,k) - 2*A327085(n,k) = A327084(n,k) - A327085(n,k).