A327087 Triangle read by rows: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional simplex using exactly k colors. Row n has (n+1)*n/2 columns.
1, 1, 2, 2, 1, 10, 54, 136, 150, 60, 1, 38, 1080, 14040, 85500, 274104, 493920, 504000, 272160, 60480, 1, 182, 42111, 2848060, 70361815, 841626366, 5722670282, 24262499520, 67665563280, 127639512000, 164044520640, 141664723200, 78702624000, 25427001600, 3632428800
Offset: 1
Examples
Triangle begins with T(1,1): 1 1 2 2 1 10 54 136 150 60 1 38 1080 14040 85500 274104 493920 504000 272160 60480 ... For T(2,1)=1, all edges of the triangle are the same color. For T(2,2)=2, the edges are AAB and ABB. For T(2,3)=2, the chiral pair is ABC-ACB.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..220 First 10 rows.
- E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.
Crossrefs
Programs
-
Mathematica
CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *) CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}] compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i>1, i-=1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s) CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p,-1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p,-1]]] pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (*partition count*) row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#] j^Total[CycleX[#]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)] array[n_, k_] := row[n] /. j -> k Table[LinearSolve[Table[Binomial[i,j], {i,1,(n+1)n/2}, {j,1,(n+1)n/2}], Table[array[n,k], {k,1,(n+1)n/2}]], {n,1,6}] // Flatten
Formula
The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A327083(n,k) = Sum_{j=1..(n+1)*n/2} T(n,j) * binomial(k,j).
Comments