cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327088 Triangle read by rows: T(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional simplex using exactly k colors. Row n has (n+1)*n/2 columns.

Original entry on oeis.org

1, 1, 2, 1, 1, 9, 36, 74, 75, 30, 1, 32, 693, 7720, 44150, 138312, 247380, 252000, 136080, 30240, 1, 154, 25041, 1500860, 35815145, 423545178, 2868102286, 12141259200, 33841521000, 63823914000, 82023091920, 70832361600, 39351312000, 12713500800, 1816214400
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
T(n,k) is also the number of unoriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using exactly k colors. Thus, T(2,k) is also the number of unoriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Triangle begins with T(1,1):
1
1  2   1
1  9  36   74    75     30
1 32 693 7720 44150 138312 247380 252000 136080 30240
For T(2,1)=1, all edges of the triangle are the same color. For T(2,2)=2, the edges are AAB and ABB. For T(2,3)=2, the chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327087 (oriented), A327089 (chiral), A327090 (achiral), A327084 (exactly k colors), A007318(n,k-1) (vertices).

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[LinearSolve[Table[Binomial[i,j], {i,1,(n+1)n/2}, {j,1,(n+1)n/2}], Table[array[n,k], {k,1,(n+1)n/2}]], {n,1,6}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A327084(n,k) = Sum_{j=1..(n+1)*n/2} T(n,j) * binomial(k,j).
A(n,k) = A327087(n,k) - A327089(n,k) = (A327087(n,k) + A327090(n,k)) / 2 = A327089(n,k) + A327090(n,k).