A327090 Triangle read by rows: T(n,k) is the number of achiral colorings of the edges of a regular n-dimensional simplex using exactly k colors. Row n has (n+1)*n/2 columns.
1, 1, 2, 0, 1, 8, 18, 12, 0, 0, 1, 26, 306, 1400, 2800, 2520, 840, 0, 0, 0, 1, 126, 7971, 153660, 1268475, 5463990, 13534290, 20018880, 17478720, 8316000, 1663200, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins with T(1,1): 1 1 2 0 1 8 18 12 0 0 1 26 306 1400 2800 2520 840 0 0 0 For T(2,2) = 2, the two colorings of the triangle edges are AAB and ABB.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..220 First 10 rows.
- E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.
Crossrefs
Programs
-
Mathematica
CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *) CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}] compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s) CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]] pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *) row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 0, pc[#] j^Total[CycleX[#]][[2]]] & /@ IntegerPartitions[n+1]]/((n+1)!/2)] array[n_, k_] := row[n] /. j -> k Table[LinearSolve[Table[Binomial[i,j], {i,1,(n+1)n/2}, {j,1,(n+1)n/2}], Table[array[n,k], {k,1,(n+1)n/2}]], {n,1,6}] // Flatten
Formula
The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition. The last n-1 entries in row n are zero.
A327086(n,k) = Sum_{j=1..(n+1)*n/2} T(n,j) * binomial(k,j).
Comments