A327091 Number of chiral pairs of length n words with integer entries that cover an initial interval of positive integers.
0, 1, 5, 36, 264, 2335, 23609, 272880, 3543360, 51123511, 811313945, 14045781456, 263429150544, 5320671461575, 115141595216009, 2657827340717760, 65185383511024320, 1692767331624879031, 46400793659613081785, 1338843898122140977776, 40562412499251225624624
Offset: 1
Keywords
Examples
a(3) = 5 because there are the following chiral pairs of words: 112/211, 122/221, 123/321, 132/231, 213/312.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Row sums of A305622.
Programs
-
PARI
a(n) = {sum(k=1, n, k! * (stirling(n, k, 2) - stirling((n+1)\2, k, 2)) / 2)}
Formula
a(n) = Sum_{k=1..n} (k!/2) * (Stirling2(n, k) - Stirling2(ceiling(n/2), k)).
Comments