cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327099 BII-numbers of set-systems with non-spanning edge-connectivity 1.

Original entry on oeis.org

1, 2, 4, 7, 8, 16, 22, 23, 25, 28, 29, 30, 31, 32, 37, 39, 42, 44, 45, 46, 47, 49, 50, 51, 57, 58, 59, 64, 67, 73, 74, 75, 76, 77, 78, 79, 82, 83, 90, 91, 97, 99, 105, 107, 128, 256, 262, 263, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to result in a disconnected or empty set-system.

Examples

			The sequence of all set-systems with non-spanning edge-connectivity 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  25: {{1},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  32: {{2,3}}
  37: {{1},{1,2},{2,3}}
  39: {{1},{2},{1,2},{2,3}}
  42: {{2},{3},{2,3}}
  44: {{1,2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
		

Crossrefs

Positions of 1's in A326787.
Simple graphs with non-spanning edge-connectivity 1 are A327071.
BII-numbers for non-spanning edge-connectivity >= 1 are A326749.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for spanning edge-connectivity 1 are A327111.
BII-numbers for vertex-connectivity 1 are A327114.
Covering set-systems with non-spanning edge-connectivity 1 are counted by A327129.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]==1&]