A327117 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that a color pattern for part i has i distinct colors in increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 7, 18, 15, 0, 1, 10, 45, 84, 52, 0, 1, 14, 94, 298, 415, 203, 0, 1, 18, 174, 844, 1995, 2178, 877, 0, 1, 23, 300, 2081, 7440, 13638, 12131, 4140, 0, 1, 28, 486, 4652, 23670, 64898, 95823, 71536, 21147, 0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975
Offset: 0
Examples
T(3,2) = 4: 2ab1a, 2ab1b, 1a1a1b, 1a1b1b. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 1, 4, 5; 0, 1, 7, 18, 15; 0, 1, 10, 45, 84, 52; 0, 1, 14, 94, 298, 415, 203; 0, 1, 18, 174, 844, 1995, 2178, 877; 0, 1, 23, 300, 2081, 7440, 13638, 12131, 4140; 0, 1, 28, 486, 4652, 23670, 64898, 95823, 71536, 21147; 0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
C:= binomial: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i)+j-1, j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] Binomial[Binomial[k, i] + j - 1, j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A327118(n).
Comments