A327135 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^3.
1, 0, 9, 3, 3, 4, 3, 0, 6, 9, 4, 2, 9, 5, 3, 3, 5, 7, 1, 9, 7, 6, 5, 7, 9, 8, 1, 5, 0, 0, 7, 7, 0, 0, 2, 3, 4, 7, 8, 0, 1, 9, 2, 5, 8, 4, 8, 3, 2, 3, 8, 3, 6, 4, 6, 3, 5, 0, 2, 3, 0, 9, 4, 3, 2, 4, 3, 2, 8, 1, 0, 6, 9, 0, 3, 2, 3, 6, 2, 1, 7, 4, 3, 4, 0, 4, 6, 2, 2, 9, 2
Offset: 1
Examples
1 + 1/2^3 - 1/3^3 + 1/4^3 - 1/5^3 - 1/6^3 + 1/8^3 + 1/9^3 - 1/10^3 + 1/11^3 - 1/12^3 - 1/13^3 + ... = 32*Pi^3/(343*sqrt(7)) = 1.0933430694...
Links
- R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, L(m=7,r=4,s=3).
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
RealDigits[32*Pi^3/(343*Sqrt[7]), 10, 102] // First
-
PARI
default(realprecision, 100); 32*Pi^3/(343*sqrt(7))
Formula
Equals 32*Pi^3/(343*sqrt(7)).
Equals (zeta(3,1/7) + zeta(3,2/7) - zeta(3,3/7) + zeta(3,4/7) - zeta(3,5/7) - zeta(3,6/7))/343.
Equals (polylog(3,u) + polylog(3,u^2) - polylog(3,u^3) + polylog(3,u^4) - polylog(3,u^5) - polylog(3,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/7) + polygamma(2,2/7) - polygamma(2,3/7) + polygamma(2,4/7) - polygamma(2,5/7) - polygamma(2,6/7))/(-686).
Equals 1/(Product_{p prime == 1, 2 or 4 (mod 7)} (1 - 1/p^3) * Product_{p prime == 3, 5 or 6 (mod 7)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023
Comments