cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327153 Number of divisors d of n such that sigma(d)*d is equal to n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A064987.

Examples

			336 has 20 divisors: [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]. Only two of them, d=12 and d=14, satisfy sigma(d) = (336/d), thus a(336) = 2.
		

Crossrefs

Cf. A000203, A064987, A327165 (positions of nonzero terms).
Cf. also A324539.

Programs

  • PARI
    A327153(n) = sumdiv(n, d, (n==d*sigma(d)));

Formula

a(n) = Sum_{d|n} [A000203(d)*d == n], where [ ] is the Iverson bracket.