cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327160 Number of positive integers that are reachable from n with some combination of transitions x -> usigma(x)-x and x -> gcd(x,usigma(x)), where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 4, 2, 5, 4, 2, 2, 6, 2, 5, 3, 6, 2, 5, 2, 4, 2, 5, 2, 4, 2, 2, 5, 6, 3, 6, 2, 7, 3, 6, 2, 4, 2, 4, 5, 5, 2, 7, 2, 7, 5, 8, 2, 4, 3, 4, 3, 4, 2, 1, 2, 7, 3, 2, 3, 4, 2, 7, 4, 8, 2, 7, 2, 7, 3, 6, 3, 3, 2, 7, 2, 6, 2, 7, 3, 6, 6, 7, 2, 1, 5, 6, 4, 8, 4, 9, 2, 9, 5, 9, 2, 4, 2, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2019

Keywords

Comments

Question: Is this sequence well defined for every n ? If A318882 is not well defined in whole N, then neither this can be.

Examples

			From n = 30 we can reach any of the following strictly positive numbers: 30 (e.g., with an empty sequence of transitions), 42 (as A034460(30) = 42), 54 (as A034460(42) = 54; note that A034460(54) = 30 again) and 6 as A323166(30) = A323166(42) = A323166(54) = 6 = A323166(6) = A034460(6), thus a(30) = 4.
		

Crossrefs

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A327160aux(n,xs) = if(vecsearch(xs,n),xs, xs = setunion([n],xs); if(1==n,xs, my(a=A034448(n)-n, b=gcd(A034448(n),n)); xs = A327160aux(a,xs); if((a==b),xs, A327160aux(b,xs))));
    A327160(n) = length(A327160aux(n,Set([])));