A327163 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = gcd(n,usigma(n)) * (-1)^[gcd(n,usigma(n))==n], and usigma is the sum of unitary divisors of n (A034448).
1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 5, 2, 4, 6, 2, 2, 7, 2, 8, 2, 4, 2, 9, 2, 4, 2, 5, 2, 7, 2, 2, 6, 4, 2, 4, 2, 4, 2, 4, 2, 7, 2, 5, 10, 4, 2, 5, 2, 4, 6, 4, 2, 7, 2, 11, 2, 4, 2, 12, 2, 4, 2, 2, 2, 7, 2, 4, 6, 4, 2, 13, 2, 4, 2, 5, 2, 7, 2, 4, 2, 4, 2, 5, 2, 4, 6, 5, 2, 14, 15, 5, 2, 4, 16, 9, 2, 4, 6, 8, 2, 7, 2, 4, 6
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..87360
Programs
-
PARI
up_to = 87360; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 A323166(n) = gcd(n, A034448(n)); Aux327163(n) = { my(u=A323166(n)); u*((-1)^(u==n)); }; v327163 = rgs_transform(vector(up_to, n, Aux327163(n))); A327163(n) = v327163[n];
Comments