A327166 Number of divisors d of n for which A000005(d)*d is equal to n, where A000005(x) gives the number of divisors of x.
1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1
Offset: 1
Keywords
Examples
108 has the following twelve divisors: [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]. Of these, only d=18 and d=27 are such that d*A000005(d) = 108, as 18*6 = 27*4 = 108. Thus a(108) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Table[Sum[If[d*DivisorSigma[0, d] == n, 1, 0], {d, Divisors[n]}], {n, 1, 120}] (* Vaclav Kotesovec, Jul 23 2022 *)
-
PARI
A327166(n) = sumdiv(n,d,(d*numdiv(d))==n);
Formula
a(n) = Sum_{d|n} [A000005(d)*d == n], where [ ] is the Iverson bracket.
Comments