cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327167 a(n) = Product_{d|A276086(n), d>1} A008578(1+A286561(n,d)), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 8, 1, 1, 1, 1, 2, 2, 1, 1, 1, 6, 1, 5, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 12, 1, 1, 1, 3, 6, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 2, 8, 1, 1, 1, 1, 48, 1, 2, 1, 1, 2, 7, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 6, 3, 3, 1, 1, 1, 1, 128
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2019

Keywords

Crossrefs

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A327167(n) = { my(m=1,v); fordiv(A276086(n),d,if((d>1) && ((v = valuation(n,d))>0), m *= prime(v))); (m); };

Formula

a(n) = Product_{d|A276086(n), d>1} A008578(1+A286561(n,d)).
Other identities. For all n >= 1:
1+A001222(a(n)) = A327168(n).