A327172 If there is a divisor d of n such that phi(d)*d = n, then a(n) = d, otherwise a(n) = 0.
1, 2, 0, 0, 0, 3, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10, 0, 7, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..21000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Crossrefs
Programs
-
Mathematica
With[{s = EulerPhi /@ Range@ 120}, Table[DivisorSum[n, # &, # s[[#]] == n &], {n, Length@ s}]] (* Michael De Vlieger, Sep 29 2019 *)
-
PARI
A327172(n) = { fordiv(n,d,if(eulerphi(d)*d == n, return(d))); (0); };
Comments