cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327235 Number of unlabeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 14, 49, 234, 1476, 15405, 307536, 12651788, 1044977929, 167207997404, 50838593828724, 29156171171238607, 31484900549777534887, 64064043979274771429379, 246064055301339083624989655, 1788069981480210465772374023323, 24641385885409824180500407923934750
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Examples

			The a(4) = 2 through a(6) = 14 edge-sets:
  {}       {}             {}
  {12,34}  {12,34}        {12,34}
           {12,35,45}     {12,34,56}
           {12,34,35,45}  {12,35,45}
                          {12,34,35,45}
                          {12,35,46,56}
                          {12,36,46,56}
                          {13,23,46,56}
                          {12,34,35,46,56}
                          {12,36,45,46,56}
                          {13,23,45,46,56}
                          {12,13,23,45,46,56}
                          {12,35,36,45,46,56}
                          {12,34,35,36,45,46,56}
		

Crossrefs

Unlabeled non-connected graphs are A000719.
Partial sums of A327075.
The labeled version is A327199.

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A327235(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        def a(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n if n else 1
        return 1+b(n)-sum(a(i) for i in range(1,n+1)) # Chai Wah Wu, Jul 03 2024

Formula

a(n) = 1 + A000088(n) - Sum_{i = 1..n} A001349(i).

Extensions

a(20)-a(21) from Chai Wah Wu, Jul 03 2024