A327235 Number of unlabeled simple graphs with n vertices whose edge-set is not connected.
1, 1, 1, 1, 2, 4, 14, 49, 234, 1476, 15405, 307536, 12651788, 1044977929, 167207997404, 50838593828724, 29156171171238607, 31484900549777534887, 64064043979274771429379, 246064055301339083624989655, 1788069981480210465772374023323, 24641385885409824180500407923934750
Offset: 0
Keywords
Examples
The a(4) = 2 through a(6) = 14 edge-sets: {} {} {} {12,34} {12,34} {12,34} {12,35,45} {12,34,56} {12,34,35,45} {12,35,45} {12,34,35,45} {12,35,46,56} {12,36,46,56} {13,23,46,56} {12,34,35,46,56} {12,36,45,46,56} {13,23,45,46,56} {12,13,23,45,46,56} {12,35,36,45,46,56} {12,34,35,36,45,46,56}
Crossrefs
Programs
-
Python
from functools import lru_cache from itertools import combinations from fractions import Fraction from math import prod, gcd, factorial from sympy import mobius, divisors from sympy.utilities.iterables import partitions def A327235(n): if n == 0: return 1 @lru_cache(maxsize=None) def b(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) @lru_cache(maxsize=None) def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) def a(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n if n else 1 return 1+b(n)-sum(a(i) for i in range(1,n+1)) # Chai Wah Wu, Jul 03 2024
Extensions
a(20)-a(21) from Chai Wah Wu, Jul 03 2024