cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327236 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs with n vertices whose edge-set has non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 4, 5, 10, 8, 5, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  1
  1  1
  1  1  1  1
  2  2  3  3  1
  4  5 10  8  5  1  1
		

Crossrefs

Row sums are A000088.
Column k = 0 is A327235.
The labeled version is A327148.
The covering version is A327201.
Spanning edge-connectivity is A263296.
Vertex-connectivity is A259862.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==k&]]],{n,0,5},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

A287689 Number of (non-null) connected induced subgraphs in the n-triangular graph.

Original entry on oeis.org

1, 7, 60, 968, 31737, 2069963, 267270032, 68629753640, 35171000942697, 36024807353574279, 73784587576805254652, 302228602363365451957792, 2475873310144021668263093201, 40564787336902311168400640561083, 1329227697997490307154018925966130304
Offset: 2

Views

Author

Eric W. Weisstein, May 29 2017

Keywords

Comments

Also the number of labeled simple graphs with n vertices whose edge-set is connected. - Gus Wiseman, Sep 11 2019

Examples

			From _Gus Wiseman_, Sep 11 2019: (Start)
The a(4) = 60 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}
  {13}  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {14}  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {23}  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {24}  {13,14}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {34}  {13,23}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
        {13,34}  {12,14,34}  {12,14,23,24}
        {14,24}  {12,23,24}  {12,14,23,34}
        {14,34}  {12,23,34}  {12,14,24,34}
        {23,24}  {12,24,34}  {12,23,24,34}
        {23,34}  {13,14,23}  {13,14,23,24}
        {24,34}  {13,14,24}  {13,14,23,34}
                 {13,14,34}  {13,14,24,34}
                 {13,23,24}  {13,23,24,34}
                 {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}             {12,13,14,23,24,34}
                 {23,24,34}
(End)
		

Crossrefs

The unlabeled version is A292300.

Programs

  • Mathematica
    Table[With[{g = GraphData[{"Triangular", n}]}, Total[Boole[ConnectedGraphQ[Subgraph[g, #]] & /@ Subsets[VertexList[g]]]]], {n, 2, 5}] - 1
    (* Second program: *)
    g[n_] := g[n] = If[n==0, 1, 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k) * (n-k-1)/2)*g[k], {k, 1, n-1}]/n]; a[n_] := Sum[Binomial[n, i]*g[i], {i, 2, n}]; Table[a[n], {n, 2, 16}] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
  • PARI
    seq(n)={Vec(serlaplace(exp(x + O(x*x^n))*(-x+log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = Sum_{i=2..n} binomial(n,i) * A001187(i). - Andrew Howroyd, Jun 07 2017
E.g.f.: exp(x)*(-x + log(Sum_{k>=0} 2^binomial(k, 2)*x^k/k!)). - Andrew Howroyd, Sep 11 2019
a(n) = A006125(n) - A327199(n). - Gus Wiseman, Sep 11 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jun 07 2017

A327201 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 3, 7, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  {}
  0 1
  0 0 1 1
  1 1 2 2 1
  2 3 7 5 4 1 1
		

Crossrefs

Row sums are A002494.
Column k = 0 is A327075.
The labeled version is A327149.
Spanning edge-connectivity is A263296.
The non-covering version is A327236 (partial sums).

A327199 Number of labeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Also graphs with non-spanning edge-connectivity 0.

Examples

			The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
		

Crossrefs

Column k = 0 of A327148.
The covering case is A327070.
The unlabeled version is A327235.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]

Formula

Binomial transform of A327070.
Showing 1-4 of 4 results.