A327244 Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i are sorted and have i colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 2, 0, 3, 10, 8, 0, 3, 27, 54, 31, 0, 5, 70, 255, 336, 147, 0, 11, 223, 1222, 2692, 2580, 899, 0, 13, 508, 4467, 15512, 25330, 19566, 5777, 0, 19, 1193, 15540, 78819, 194075, 248976, 160377, 41024, 0, 27, 2822, 52981, 375440, 1303250, 2463534, 2593339, 1430288, 322488
Offset: 0
Examples
T(3,1) = 3: 3aaa, 2aa1a, 1a2aa. T(3,2) = 10: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab. T(3,3) = 8: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 2; 0, 3, 10, 8; 0, 3, 27, 54, 31; 0, 5, 70, 255, 336, 147; 0, 11, 223, 1222, 2692, 2580, 899; 0, 13, 508, 4467, 15512, 25330, 19566, 5777; 0, 19, 1193, 15540, 78819, 194075, 248976, 160377, 41024; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
C:= binomial: b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add( b(n-i*j, min(n-i*j, i-1), k, p+j)/j!*C(C(k+i-1,i),j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
c = Binomial; b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k, p+j]/j!*c[c[k + i - 1, i], j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i, 0]*(-1)^(k-i)*c[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A327595(n).