cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327266 Product of A325907(n) and its 9's complement.

Original entry on oeis.org

18, 2268, 22316868, 2222332266866868, 22222222333322316666886866866868, 2222222222222222333333332222332266666666888866866666886866866868
Offset: 1

Views

Author

Seiichi Manyama, Sep 15 2019

Keywords

Examples

			a(1) =        3 *        6 =         18.
a(2) =       63 *       36 =        2268.
a(3) =     3363 *     6636 =      22316868.
a(4) = 66663363 * 33336636 =  2222332266866868.
-----------------------------------------------
a(1) =        18        =        18        - 2 *        0 +    0 * 10^1.
a(2) =       2268       =       2188       - 2 *       10 +    1 * 10^2.
a(3) =     22316868     =     22218888     - 2 *     1010 +   10 * 10^4.
a(4) = 2222332266866868 = 2222222188888888 - 2 * 11011010 + 1101 * 10^8.
		

Crossrefs

Programs

  • Ruby
    def A(n)
      a = [3, 6]
      b = ([[3]] + (1..n - 1).map{|i| [a[i % 2]] * (2 ** (i - 1))}).reverse.join.to_i
      b * (10 ** (2 ** (n - 1)) - 1 - b)
    end
    def A327266(n)
      (1..n).map{|i| A(i)}
    end
    p A327266(6)

Formula

a(n) = A084021(A325907(n)) = A325907(n) * (A002283(2^(n-1)) - A325907(n)).
a(n) = A327294(n) - 10^(2^(n-1)) = a(n) = (2 * 10^(2^n) - 3 * 10^(2^(n-1)) - 8)/9 - 2 * A325493(n-1) + A325910(n-1) * 10^(2^(n-1)).