A327288 Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size five are used and the colors are introduced in increasing order.
1, 2, 5, 10, 20, 36, 73, 125, 222, 372, 623, 1002, 1611, 2559, 3984, 6139, 9355, 14096, 21028, 31093, 45523, 66403, 95779, 137495, 195813, 277531, 390428, 546942, 761113, 1054749, 1454412, 1996271, 2727247, 3711683, 5029288, 6789347, 9130315, 12234596, 16335987
Offset: 15
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 15..5000
Crossrefs
Column k=5 of A321878.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(5): seq(a(n), n=15..53);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]]; a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!]; a /@ Range[15, 53] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Formula
a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-4))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-4)) / (4*5!*sqrt(15)*Pi*n). - Vaclav Kotesovec, Sep 18 2019