A327289 Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size six are used and the colors are introduced in increasing order.
1, 2, 5, 10, 20, 36, 65, 123, 210, 362, 603, 994, 1595, 2541, 3956, 6225, 9501, 14516, 21820, 32703, 48315, 71175, 103589, 150167, 216413, 309627, 440400, 623404, 877303, 1228493, 1712235, 2374639, 3278894, 4507571, 6175713, 8421243, 11447049, 15496728
Offset: 21
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 21..5000
Crossrefs
Column k=6 of A321878.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(6): seq(a(n), n=21..59);
Formula
a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-5))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-5)) / (4*6!*sqrt(18)*Pi*n). - Vaclav Kotesovec, Sep 18 2019