A327293 Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size ten are used and the colors are introduced in increasing order.
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 795, 1250, 1982, 3087, 4798, 7332, 11191, 16821, 25196, 37308, 54951, 80131, 117346, 169306, 244417, 349967, 500258, 709715, 1005550, 1414751, 1986544, 2773496, 3861747, 5349095, 7389698, 10178856, 13964050, 19102030
Offset: 55
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 55..5000
Crossrefs
Column k=10 of A321878.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(10): seq(a(n), n=55..93);
Formula
a(n) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2,-9))*n/3)) * sqrt(Pi^2 - 6*polylog(2,-9)) / (4*10!*sqrt(30)*Pi*n). - Vaclav Kotesovec, Sep 18 2019
Comments