cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A327303 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-9). This is the 4 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 4, 4, 79, 79, 79, 3204, 18829, 331329, 1112579, 1112579, 20643829, 118300079, 850721954, 3292128204, 27706190704, 149776503204, 302364393829, 1065303846954, 8694698378204, 46841671034454, 332943965956329, 332943965956329, 5101315547987579, 28943173458143829
Offset: 0

Views

Author

Jianing Song, Sep 16 2019

Keywords

Comments

a(n) is the unique number k in [1, 5^n] and congruent to 4 mod 5 such that k^2 + 9 is divisible by 5^n.

Examples

			The unique number k in {4, 9, 14, 19, 24} such that k^2 + 9 is divisible by 25 is k = 4, so a(2) = 4.
The unique number k in {4, 29, 54, 79, 104} such that k^2 + 9 is divisible by 125 is k = 79, so a(3) = 46.
The unique number k in {79, 204, 329, 454, 579} such that k^2 + 9 is divisible by 625 is k = 79, so a(4) = 79.
		

Crossrefs

For the digits of sqrt(-9) see A327304 and A327305.
Approximations of 5-adic square roots:
A327302, this sequence (sqrt(-9));
A324027, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).

Programs

  • Maple
    R:= [padic:-rootp(x^2+9,5,101)]:
    R:= op(select(t -> padic:-ratvaluep(t,1)=4, R)):
    seq(padic:-ratvaluep(R,n),n=0..100); # Robert Israel, Jan 16 2023
  • PARI
    a(n) = truncate(-sqrt(-9+O(5^n)))

Formula

a(1) = 4; for n >= 2, a(n) is the unique number k in {a(n-1) + m*5^(n-1) : m = 0, 1, 2, 3, 4} such that k^2 + 9 is divisible by 5^n.
For n > 0, a(n) = 5^n - A327302(n).

A327305 Digits of one of the two 5-adic integers sqrt(-9) that is related to A327303.

Original entry on oeis.org

4, 0, 3, 0, 0, 1, 1, 4, 2, 0, 2, 2, 3, 2, 4, 4, 1, 1, 2, 2, 3, 0, 2, 2, 4, 2, 1, 4, 1, 4, 0, 0, 0, 2, 4, 1, 1, 3, 1, 1, 0, 4, 1, 2, 1, 2, 2, 1, 1, 2, 0, 0, 3, 1, 2, 0, 4, 2, 0, 3, 4, 4, 0, 0, 0, 0, 1, 4, 0, 3, 4, 0, 1, 4, 4, 3, 3, 0, 2, 3, 2, 3, 3, 3, 1, 4, 2, 4
Offset: 0

Views

Author

Jianing Song, Sep 16 2019

Keywords

Comments

This is the 5-adic solution to x^2 = -9 that ends in 4. A327304 gives the other solution that ends in 1.

Examples

			Equals ...1131142000414124220322114423220241100304.
		

Crossrefs

Digits of 5-adic square roots:
A327304, this sequence (sqrt(-9));
A324029, A324030 (sqrt(-6));
A269591, A269592 (sqrt(-4));
A210850, A210851 (sqrt(-1));
A324025, A324026 (sqrt(6)).

Programs

  • Maple
    op([1,1,3], select(t -> padic:-ratvaluep(t,1)=4, [padic:-rootp(x^2+9,5,100)])); # Robert Israel, Aug 31 2020
  • PARI
    a(n) = truncate(-sqrt(-9+O(5^(n+1))))\5^n

Formula

For n > 0, a(n) is the unique m in {0, 1, 2, 3, 4} such that (A327303(n) + m*5^n)^2 + 9 is divisible by 5^(n+1).
a(n) = (A327303(n+1) - A327303(n))/5^n.
For n > 0, a(n) = 4 - A327304(n).

A327302 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-9). This is the 1 (mod 5) case (except for n = 0).

Original entry on oeis.org

0, 1, 21, 46, 546, 3046, 12421, 59296, 59296, 840546, 8653046, 28184296, 125840546, 369981171, 2811387421, 2811387421, 2811387421, 460575059296, 2749393418671, 10378787949921, 48525760606171, 143893192246796, 2051241825059296, 6819613407090546, 30661471317246796
Offset: 0

Views

Author

Jianing Song, Sep 16 2019

Keywords

Comments

a(n) is the unique number k in [1, 5^n] and congruent to 1 mod 5 such that k^2 + 9 is divisible by 5^n.

Examples

			The unique number k in {1, 6, 11, 16, 21} such that k^2 + 9 is divisible by 25 is k = 21, so a(2) = 21.
The unique number k in {21, 46, 71, 96, 121} such that k^2 + 9 is divisible by 125 is k = 46, so a(3) = 46.
The unique number k in {46, 171, 296, 421, 546} such that k^2 + 9 is divisible by 625 is k = 546, so a(4) = 546.
		

Crossrefs

For the digits of sqrt(-9) see A327304 and A327305.
Approximations of 5-adic square roots:
this sequence, A327303 (sqrt(-9));
A324027, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).

Programs

  • PARI
    a(n) = truncate(sqrt(-9+O(5^n)))

Formula

a(1) = 1; for n >= 2, a(n) is the unique number k in {a(n-1) + m*5^(n-1) : m = 0, 1, 2, 3, 4} such that k^2 + 9 is divisible by 5^n.
For n > 0, a(n) = 5^n - A327303(n).
Showing 1-3 of 3 results.