A327340 Numerator of the rationals r(n) = (1/n^2)*Phi_1(n), with Phi_1(n) = Sum{k=1..n} psi(k), with Dedekind's psi function.
1, 1, 8, 7, 4, 8, 40, 13, 64, 41, 94, 59, 132, 39, 4, 51, 222, 43, 278, 157, 346, 191, 406, 227, 484, 263, 562, 305, 640, 178, 24, 99, 280, 447, 942, 169, 1052, 278, 1168, 31, 1282, 689, 1422, 747, 58, 819, 1686, 99, 1838, 482
Offset: 1
Examples
The rationals (in lowest terms) begin: 1/1, 1/1, 8/9, 7/8, 4/5, 8/9, 40/49, 13/16, 64/81, 41/50, 94/121, 59/72, 132/169, 39/49, 4/5, 51/64, 222/289, 43/54, 278/361, 157/200, 346/441, 191/242, 406/529, 227/288, 484/625, 263/338, 562/729, 305/392, 640/841, 178/225, 24/31, ... The limit of r(n) for n-> infinity is A323669 = 0.759908877317533285829... r(10^5) is approximatly 0.7599142240 (10 digits).
References
- Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 100, Satz 2.
Links
- Eric Weisstein's World of Mathematics, Dedekind Function.
- Wikipedia, Dedekind psi function.
Programs
-
Mathematica
psi[0] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); a[n_] := Numerator[Sum[psi[k], {k, 1, n}]/n^2]; Array[a, 50] (* Amiram Eldar, Sep 03 2019 *)
-
PARI
dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615 a(n) = numerator(sum(k=1, n, dpsi(k))/n^2); \\ Michel Marcus, Sep 18 2023
Formula
a(n) = numerator(r(n)), with the rationals r(n) = (1/n^2)*Sum{k=1..n}(k*Product_{p|k}(1 + 1/p)), with distinct prime p divisors of k (with empty product set to 1 for k = 1), for n >= 1.
a(n) = numerator(A173290(n)/n^2). - Amiram Eldar, Nov 24 2022
Comments